
(
S
A
-
C
-
1
8
5
8
8
)
 

P
A
T
H
 
S
E
L
E
C
I
 

S
Y
S
T
E
M
 

N7'4-267,72
D
E
V
E
L
O
P
1
E
N
T
Y
 
A
I
D
 
V
A
L
1
T
O
N
 
F
O
R
 

M
A
R
T
I
A
 

:
V

bD
 

E
H
I
C
L
E
 

e
n
s
l
a
e
 

r Pl 
e
 

J
c
'

Tinst
0
)
 

93 
p
 H
C
 
$751 

C
S
C
 

14 
U
n
c
a
s

G
3 

.11 
41'194

~41

0
0

i7oL
~
\
 

i~2T
I



R.P.I. Technical Report M -42

PATH SELECTION SYSTEM DEVELOPENT AND
EVALUATION FOR A MARTIAN ROVING VEHICLE

by

Richard S. Campbell

Robert R. Simonds

NASA Grant NGL 33-018-091

Analysis and Design of a Capsule Landing System
and Surface Vehicle Control System for Mars Exploration

May 1974

Rensselaer Polytechnic Institute
Troy, New York



CONTENTS

Page

LIST OF FIGURES.................................................. v

LIST OF TABLES.................................. vii

ACKNOWLEDGEMENT........... .................... ..................... Viii

ABSTRACT ............................................................ ix

I. INTRODUCTION................................................................................. 1

II. STANDARD TEST TERRAINS AND PROCEDURE ............................... 3

A. The Use of Random Effects...................................... 3

1. Attitude Noise...................................... 3
2. Range Measurement Noise..................................... 4
3. Slope Measurement Noise .................................... 4

B. Obstacles..................................................... 5

C. Standard Testing Procedure .................................... 6

1. Single Obstacle Encounters on Flat Base Terrain............ 7
2. Single Obstacle Encounters on Rolling Base Terrain.......... 9
3. Multi-Obstacle Cases ...................................... 12

D. Conclusions and Recommendations ................................ 18

III. EVALUATION OF A MID-RANGE SENSOR SYSTEM.... ..................... 19

A. System Description............................................. 19

1. Sensor ................................................. 19
2. Terrain Modeler ................ ........................ 21
3. Path Selection Algorithm .................................. 22

B. Simulation Procedure .......................................... 25

C. Simulation Results ............................................ 25

1. Single Boulder Encounters.................................. 25
2. Multi-Obstacle Cases ....................................... 29
3. Special Terrains......................................... 34

D. Conclusions and Recommendations................................ 37

NOiT FILLKD

iii



Page

IV. PERFORMANCE OF A SHORT RANGE SENSOR SYSTEM ......................... 40

A. System Description .............................................. 40

1. Sensors and Sensing Configuration.......................... 40
2. Terrain Modeler ............................................ 42
3. Path Selection Algorithm .................... ................. 46

B. Simulation Procedure ...................................... ...... 47

1. Test Procedure.............................................. 47
2. Performance Evaluation..................................... 49

C. Simulation Results ............................................................. 52

1. Case I; Single Boulder Encounters on a Flat Base
Terrain........................................ 52

2. Case II: Single Crater Encounters on a Flat Base
Terrain........................................ 56

3. Case III: Single Obstacle Encounters on a Gently
Rolling Base Terrain........................... 66

4. Case IV: Single Obstacle Encounters on a Rolling
Incline ........................................ 75

5. Case V: Boulder-Crater Field ....................... ........ 79

D. Conclusions and Recommendations ................................ 79

V. SUMMARY .............. ... .............................. ................. 82

A. Summary of Progress ............................................ 82

B. Future Work....................... ............................ 82

1. Standard Test Terrains and Procedure ....................... 82
2. Evaluation of a Proposed Mid-Range Sensor System ........... 83
3. Evaluation of a Short Range Sensor System.................. 83
4. Evaluation of Future Systems ............................... 83

REFERENCES .......................... ......................... . 84

iv



LIST OF FIGURES

Page

Figure II-1 Single Boulder Encounter (Flat Ba e Terrain) ............... 8

Figure 11-2 Gently Rolling Terrain........... ......................... 10

Figure 11-3 Rolling Incline .......................................... 11

Figure 11-4 Single Obstacle Encounters (Rolling Incline)................ 13

Figure II-5 Keyhole Problem...... .......... .................... .......... 14

Figure 11-6 Boulder-Crater Field...................................... 16

Figure 11-7 Box Canyon.................................................. 17

Figure III-1 Sensor Scan (Top View) ...................................... o20

Figure 111-2 Path Selection Algorithm ................................... 23

Figure 111-3 Single Boulder Encounter (Noise)............................ 26

Figure 111-4 Gently Rolling Terrain (No Obstacle)....................... 28

Figure 111-5 Rolling Incline (Boulder Near Bottom) ....................... 30

Figure 111-6 Rolling Incline (Boulder on Crest).......................... 31

Figure 111-7 Single Boulder Encounter (Two Buffer Specifications) ........ 33

Figure 111-8 Boulder-Crater Field (With Noise) ........................... 35

Figure 111-9 A Confused Path....................................... .... .. 36

Figure III-10 Demonstration of Proposed Emergency Mode.................... 38

Figure IV-1 Sensing Configuration (Side View) ............................. 41

Figure IV-2 Forward Beam Gimballing Operation........................... 43

Figure IV-3 Sensing Configuration (Top View) ........................... 44

Figure IV-4 Slope Measurement ........................................................ .... 45

Figure IV-5 Avoidance Maneuver...... ......................... ........ 48

Figure IV-6 Case I: Typical Output for Tests 1, 2, 3, 4, 5, 7.......... 55

Figure IV-7 Case I: Test 6 (Range Measurement Noise).................... 57

Figure IV-8 Case II: Test 1 (No Noise)............................................ 59

V



Page

Figure IV-9 Case II: Test 2 (Attitude Noise) ......................... 61

Figure IV-10 Case II: Test 3 (Slope Measurement Noise)................. 62

Figure IV-11 Case II: Test 4 (Slope Measurement Noise)................. 63

Figure IV-12 Case II: Test 5 (Range Measurement Noise). ................ 64

Figure 1V-13 Case II: Test 6 (Range Measurement Noise) ................. 65

Figure IV-14 Case II: Test 7 (All Types of Noise) ........................ 67

Figure IV-15 Case III: Test 1 (No Noise)............................... 71

Figure IV-16 Case III: Test 2 (No Noise) ................................. 72

Figure IV-17 Case III: Test 3 (Noise).................................. 73

Figure IV-18 Case III: Test. 4 (Noise)................................... 74

Figure IV-19 Obstacle Locations for Case IV............................ 76

Figure IV-20 Case IV: Boulder Encounter (No Noise)..................... 77

Figure IV-21 Case IV: Crater Encounter (No Noise)...................... 78

Figure IV-22 Boulder-Crater Field (Noise) .............................. 80

vi



LIST OF TABLES

Page

Table III-1 Concave Obstacle Mode Decisions.................. 24

Table III-2 Average Obstacle Clearance Distances............. 32

Table IV-1 Simulation Sequence for Case I................... 53

Table IV-2 Performance Results for Case I................... 54

Table IV-3 Performance Results for Case II.................. 58

Table IV-4 Simulation Sequence for Case III ................ 68

Table IV-5 Performance Results for Case III................. 69

vii



ACKNOWLEDGEMENT

The authors wish to express special gratitude to Professor Dean

K. Frederick for his supervision of this project.

Special thanks are also conveyed to Professor S. W. Yerazunis, for

his direction and helpful suggestions, and to all others connected with

the Mars Roving Vehicle effort from whom the authors received information

and suggestions.

This research was supported by the National Aeronautics and Space

Administration as a joint faculty-student project at Rensselaer Polytechnic

Institute.

viii



ABSTRACT

A path selection system evaluation test procedure has been developed

to enhance the analysis capability of an existing digital computer simul-

ation package. The procedure investigates the obstacle avoidance ability

of a path selection system on a sequence of test terrains with and without

random effects.

Using the standard test procedure a proposed mid-range sensor system

has been evaluated and recommendations directed at improving the performance

of the system have been made. In addition, the initial development and

evaluation of a short range sensor system has been undertaken.

ix



I. INTRODUCTION

The development of an.autonomous vehicular path selection control system

is mandatory for the success of an unmanned Mars exploration mission. Due to

the large communication delay time (from nine to twenty-five minutes) between

Martian and Earth control stations this system must operate with a high degree

of reliability. The system should be able to select a path to a specified

destination such that dangerous obstacles are avoided and other mission con-

siderations are met.

Previous efforts concerning this area of investigation have concentrated

upon the development of a comprehensive digital computer simulation package

for the purpose of evaluating proposed path selection systems and developing

new path selection system concepts. A description of the development of this

simulation program may be found in Ref. 1. The computer package has the

capability of simulating a wide range of path selection systems over a variety

of terrain characteristics. To enhance the realism of the program, a number

of non-ideal features were incorporated. These include: vehicle bounce,

sensor-reading error, and slope measurement error (see Section II-A). In

addition, the program has the capability of quantitatively evaluating system

performance using established criteria.

The subject of this report is three-fold. The firstsubject discussed is

the development of standard test terrains and simulation procedure. The purpose

of this activity is to facilitate the use of the simulation program as an

evaluation tool. Next, using the standard test terrains, a proposed mid-range

sensor system has been evaluated. As a result of the evaluation a number of

recommendations directed at improving the system have been proposed and will

be investigated in future work. Finally, the initial development and evaluation

1



2.

of a short range sensor system has been undertaken. The objective of this

activity was to determine if successful navigation could be effectively per-

formed given a sensor with a maximum range cap bility of three meters.

The following section presents a discussi n of the standard test terrains

and simulation procedure. The evaluation of the proposed mid-range sensor

system is discussed in Section III. Section I contains a discussion of the

initial development and evaluation of the short range sensor system. The

final section presents a summary of progress and suggestions for future work.



II. DEVELOPMENT OF STANDARD TEST TERRAINS AND EVALUATION PROCEDURE

To facilitate the use of the computer simulation package as an evaluation

tool, the development of a standard testing procedure has been undertaken.

This testing procedure consists of investigating the obstacle avoidance be-

havior of a path selection system by simulating the system's performance on

a sequence of test terrains in the presence of random effects.

In developing this testing sequence an effort was made to determine

general rules for the structuring of test terrains, the use of random effects,

and the examination of system characteristics that would provide the most

information from each simulation. The developed testing sequence will not

only provide the program user with a set of terrains and techniques to meet

his analysis needs but also a set of guidelines for incorporating additional

test situations into the sequence as the need arises.

A. The Use of Random Effects

The simulation package has the capability of adding uniformly distributed

white noise to a variety of variables in a given simulation. The program user

specifies the mean and maximum deviation of the noise and the variable to which

it is to be added. If desired, the noise can be filtered before the addition.

If the noise is filtered a second order filter is used and the program user

specifies the filter's damping ratio and natural frequency.

The testing sequences employ this noise capability to simulate a path

selection system's performance in the presence of the types of noise corruption

found in a realistic environment. The use of attitude, range and slope measure-

ment noise are discussed below.

1. Attitude Noise

Attitude noise is a term used for the random effects encountered



during a range measurement due to the pitching and rolling motion of the

vehicle as it passes over terrain irregularities. To create the effect

of a rubble strewn test terrain, filtered white noise is added to the

vehicle's in-path and cross-path slopes, therebyrandomly tilting the

vehicle and perturbing the sensor orientation accordingly. Knowledge of

the damping ratios of the rover's pitch and roll modes is used to specify

the filter's characteristics. The maximum deviation of the added noise

is chosen to produce and appropriate amount of tilt. Typically a 100

maximum deviation for both in-path and cross-path slopes produces reasonable

results.

2. Range Measurement Noise

To simulate the effects of noise corrupted range measurements on

system performance, unfiltered white noise is added to each measurement

during every scanning operation. A suggested part of any system evaluation

is to determine the maximum amount of noise in these measurements that can

be tolerated before severe degrading of the system's performance is encount-

ered. This can be estimated by running several simulations using this

noise effect alone and increasing the maximum deviation of the added noise

in each simulation until the system can no longer detect obstacles in its

path.

3. Slope Measurement Noise

During any simulation the path selection system is provided with the

values of the vehicle's in-path and cross-path slopes as it moves across

the test terrain. This simulates the information that would be available

from on-board accelerometer measurements of the vehicle's pitch and roll

orientations. Slope measurement noise is a term used in this report for

the addition of noise to these measurements. The effect is simulated by



adding unfiltered white noise to the values of the vehicle's in-path

and cross-path slopes that are made available to the system. This effect

should be employed if the system that is being evaluated uses these

measures of vehicle orientation in the course of its processing. A

suggested part of this type of system's evaluation is to determine how

much noise can be tolerated in these measurements before severe degrading

of performance occurs. t

The procedure used in the test sequences has been to first examine the

functioning of the system in the absence of noise and, if the performance is

satisfactory, to repeat the sequence with the addition of noise effects.

Noisy performance is examined using all noise effects simultaneously after

appropriate noise levels for each effect has been determined by simulation.

B. Obstacles

The principle types of obstacles available in the simulation are spherical

or drum shaped boulders and spherical craters. Though at first glance it may

appear that the simulated boulders and craters are poor characterizations of

the real thing, this description is adequate for testing a path-selection

system's obstacle avoidance behavior and requires less computer time than a

more elaborate description. The boulders selected for use in the test terrains

have height-to-diameter ratios of unity. Boulders with heights of 2/3 and

2 meters, respectively, were used for analysis purposes. The 2/3 meter size

is roughly on the order of the maximum step height that the rover can handle

and represents a lower bound on boulder obstacle sizes. Larger sizes were not

used as it was felt that they would be too easily detected to be useful.

The craters selected for use in the test terrains have depth-to-diameter

ratios of 1/3 and are used in diameters of 1, 3, and 9 meters. The first case



represents a lower bound for the crater to be considered an obstacle, whereas

the second case has dimensions on the order of the vehicle's dimensions. The

largest size is roughly three times the size of the vehicle and is therefore

large enough and deep enough to represent a serious hazard to the vehicle.

C. Standard Testing Procedure

The sequence of test terrains outlined in this report examines the obstacle

avoidance behavior of a path selection system under a variety of ideal and

non-ideal conditions. The testing begins with relatively simple avoidance

problems involving a single boulder or crater and proceeds to more complicated

situations. Each avoidance problem is repeated on several different base

terrains in order to enable assessment of the effects of in-path and cross-path

slopes on the system's functioning. In every case the noiseless performance

of the system is first examined. If the performance is satisfactory, the case

is repeated with the addition of noise.

In the test terrain sequences heavy emphasis is placed on obtaining infor-

mation from single obstacle encounter situations. Available Mariner photo-

graphs (Ref. 2) of the Martian surface indicate a chaotic, lunar-like landscape

with a high incidence of craters, rilles, and depressions. Though terrain

data for resolutions on the order of 50 meters is unavailable, it seems

reasonable to require that a path selection system be capable of avoiding a

single boulder or crater of moderate size in a variety of slope settings.

The simplicity of a terrain containing a single obstacle makes the effect

on a system's obstacle avoidance behavior of changing a system parameter much

easier to determine. The system's avoidance performance can easily be evalu-

ated on the basis of the clearance that is maintained as the vehicle travels

past the obstacle and the distance from the obstacle at which avoidance be-

havior is first exhibited.



In general, terrains involving a single encounter situation result in a

simulation that produces a good deal of information and requires much less

computer time than a more complicated terrain characterization. In the test

terrain sequences outlined below satisfactory performance on these basic

terrains is required before performance on more complicated multi-obstacle

terrains is examined.

1. Single Obstacle Encounters on Flat Base Terrain

In this basic avoidance situation shown in Fig. II-1, a single

boulder or crater is placed directly on the anticipated line of travel

from the vehicle's initial position to the specified target position.

The initial position is chosen such that the boulder or crater is beyond

the sensor's range on the first scan. The target is positioned so as to

be attainable and-also minimize the length of the anticipated vehicle

path. This shortens the amount of computer time necessary for the

simulation and thereby reduces its cost. If the performance is satis-

factory, the same cases are repeated with the addition of noise effects.

The range at which the system begins active avoidance and the closest

approach of the vehicle to the obstacle are recorded for each case and

are used as a measure of avoidance performance

The simplicity of this test terrain makes it especially suited for

examining the effects of parameter changes on system performance and it

should be used to examine and set noise levels for the random effects

used in the simulations. Successful performance on this basic terrain

In addition a quantitative indicator of performance is available in each
simulation in the form of a figure of merit. See "Performance Evaluation"
in Section IV-B for a detailed description.
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is required before the effects of varying the base terrain are examined.

2. Single Obstacle Encounters on Rolling Base Terrains

a) Gently Rolling Terrain

In this testing sequence the terrain shown in Fig. II-2 is used

to examine system performance in the p esence of the type of non-zero

in-path and cross-path slopes found in a gently undulating terrain.

The system's noiseless functioning is examined first. The initial

position and target position are chosen to provide non-zero in-path

and cross-path slopes by angling across the terrain, or just in-path

slopes by moving in the x-direction only . A case with no obstacles

is run to determine the vehicle path to the target and to serve as

a base line in predicting when avoidance behavior begins. A single

boulder or crater is then placed directly in the vehicle's path to

the target and the procedure outlined for the flat base terrain

sequence is followed. If the performance is satisfactory the same

cases are repeated with the addition of noise.

b) Rolling Incline

In this testing sequence the terrain shown in Fig. II-3 is used

to examine system performance in the presence of the type of non-zero

in-path and cross-path slopes encountered on the side of a hill.

The incline has a maximum in-path slope of 180 to 200 and presents

no hazard to vehicle travel. Both uphill and downhill approaches

In the coordinate system used in the terrain contour maps shown in the figuresthroughout this report, the x-axis runs from left to right across the page and the
y-axis from the bottom to the top of the page. The z-axis points out of thepage and elevations are represented by numbers and blanks.
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are possible. The choices of initial vehicle position and target

position allow a variety of in-path and cross-path slopes to be

encountered as the vehicle proceeds to the target. First a case

without obstacles is run to determine the path to the target and to

serve as a base line in establishing when avoidance behavior begins.

A single boulder or crater is then placed on the vehicle's path and

the procedure outlined in the flat base terrain sequence is followed.

The choice of the obstacle's position is based upon finding situ-

ations along the vehicle path to target where the effects of in-path

and cross-path slopes make detection difficult. Figure 11-4 shows

two possible uphill cases for a path parallel to the x-axis. In

the first situation the presence of the boulder is masked by the

hill in the background. In the second situation the sensor beam is

tilted above the obstacle's location.

3. Multi-Obstacle Cases

The previous sequences examined the system's performance in avoiding

single obstacles in a variety of slope settings and in the presence and

absence of noise. The next sequence of terrains assumes the system has

proved it can successfully avoid single obstacles, and presents the

system with more complicated avoidance problems to solve. All these

terrains require longer paths tb target involving the successful avoidance

of several obstacles in a variety of slope settings. All cases are run

in the presence of noise.

a) Two Obstacle Key-Hole Problem

In this simple avoidance problem shown in Fig. II-5 the system

must choose between traveling through the "key-hole" formed by two

boulders, or craters, or circling around the obstacles to reach
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target. Two variations are possible with this problem. In the

first, the obstacles are positioned to make the key-hole wide

enough to be a safe path to target. In this case the correct

solution to the problem is to travel through the key-hole to reach

the target. The indicators of system performance are the time to

travel to target, the length of the chosen path and the closest

approach to an obstacle.

In the second arrangement the obstacles are placed close enough

together to make the path through the key-hole not wide enough to

be considered safe. In this case the correct solution is to circle

the obstacles to target. The indicator of system performance in

this simulation is the closest approach to an obstacle.

b) Boulder Crater Field

Figure II-6 shows a maze-like arrangement of boulders and craters

of various sizes lying at the base of a 2 meter hill. There are

several possible paths through the field and the average path length

to the target is anticipated to be 50 to 80 meters. Filtered white

noise is used during the simulation to create the effect of rubble

strewn on the base terrain varying in size up to a maximum of 0.1

meters. The indicators of system performance in this simulation

are the time to travel to the target, the length of the chosen path,

and the closest approach to an obstacle.

b) Box Canyon

Figure II-7 shows a box canyon formed by three Gaussian hills,

each too steep to be climbed. The vehicle must back out of the

canyon and circle the hills to reach target.
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D. Conclusions and Recommendations

The test terrains that have been developed to date place heavy emphasis

on single obstacle encounters in a variety of slope settings and in the

presence and absence of noise effects. Satisfactory performance on these

basic terrains is required before performance on more complicated multi-obstacle

terrains is examined. The development of single obstacle encounter terrains

has been essentially completed and future work should concentrate on the

development of additional multi-obstacle terrains.
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III. EVALUATION OF A MID-RANGE SENSOR SYSTEM

The.mid-range sensor system evaluated in this section was proposed by the

navigational computer group at Cornell University in 1972. A brief description

of the system is presented below. The development of this system is discussed

in greater length in Ref. 3.

In evaluating the system it was first necessary to incorporate the system

features into the computer simulation package. The next step was to carry out

a sequence of simulation runs. These simulations were performed using the

guidelines of the standard testing procedure described in Section II. Finally,

based on the simulation results the system's performance was evaluated and

recommendations directed at improving the system design are presented in

Part D of this section.

A. .System Description

The proposed path selection system, as represented in the simulation

package, is divided into three distinct operations: the sensor, the terrain

modeler, and the path selection algorithm. A description of each operation

follows:

1. Sensor

A sensor which measures ranges up to ten meters is simulated. The

sensor is mounted on a vertical mast fixed to the front of the vehicle.

The mast height above ground level is specified by the program user.

Sensor orientation is calculated by taking into account the effects of

in-path and cross-path slopes at the vehicle's current position.

During each sensor scan a single beam, which moves in a plane

perpendicular to the mast, uniformly sweeps the area in front of the

vehicle (see Fig. III-1). At each scan twenty-nine range measurements
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are made. The scan time is assumed to be instantaneous and the time

between sensor scans is two seconds. The number of degrees between

successive beam shots is uniform and defined as the azimuth difference.

The mid-range sensor is designed primarily to detect large positive

obstacles. However, in addition to the mid-range sensor, an ideal

mechanical sensor is simulated. If the mid-range system fails to

detect a dangerous obstacle this sensor acts as a system override. The

mechanical sensor is simulated by computing, at each half meter increment

of travel, the slope between a point located directly beneath the center

of the front edge of the vehicle and a point on the surface which is

one-half meter in front of the vehicle. If the magnitude of this slope

is greater than thirty degrees then the emergency mode is called.

2. Terrain Modeler

This process operates on the range measurements received from the

sensor simulator. The modeler assigns to the fifteen forward paths

P1, P2,...,P15, either a value of unity, to represent an acceptable path,

or a value of zero, to represent an unacceptable path.

In order for a given forward path to be rated as acceptable the range

measurement for that path, and the measurements for the seven adjoining

paths on each side, must be within certain computed thresholds. This set

of minimum range values is computed using the formula:

-w+B
R. = cos2 for all i /2

where:

R. = minimum range value for path being analyzed (meters).

W = specified vehicle width (meters).

B = desired buffer zone (meters).
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9. = angle of path with respect to front
1

edge of vehicle (radians).

Figure III-1 shows the locations of these variables with respect to the

location of the vehicle. The minimum range value is set at eight meters

for .= /2 /2and for all other computed min um range values which are

greater than eight meters. Since the vehicle travels about two meters

between sensor scans and the maximum rangei threshold value is eight

meters, then the vehicle is expected to begin obstacle avoidance at a

distance of between six and eight meters from a detectable obstacle, in the

absence of the effects of random disturbances.

.3. Path Selection Algorithm

A block diagram representation of the path selection algorithm is

shown in Fig. III-2. In normal operation the path selection algorithm

chooses the closest acceptable path to target. If all of the paths are

blocked the emergency mode is called and the following steps are taken:

1) the vehicle is backed up in a straight line,

2) a new sensor scan is taken,

3) the seven forward paths P5, IP,...,Pll are blocked, and

4) the closest acceptable path to target is again selected.

A special feature of the path selection algorithm is the concave

obstacle mode. This mode was specifically designed to aid the vehicle

in reaching its destination if trapped by obstacles forming a concave

blockade. When in this mode the maximum allowed minimum range value is

reduced from eight to five meters. Then depending on the previous turn

made and the present quadrant of the destination direction either the

extreme left or extreme right path is chosen. Table III-1 contains a

summary of the concave obstacle mode decisions.
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TABLE III-1. CONCAVE OBSTACLE MODE DECISIONS

PREVIOUS PRESENT QUADRANT OF DESTINATION DIR. NEXT
TURN IPATH TO
MADE BE

FRONT REAR FRONT REAR BE
CHOSEN

RIGHT RIGHT LEFT LEFT

X LEFT

X NEITHER
NEITHER

X RIGHT

X NEITHER

X LEFT-

X NEITHER
RIGHT

X LEFT

X LEFT

X RIGHT

X RIGHT
LEFT

X RIGHT

X NEITHER
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B. Simulation Procedure

The simulation and evaluation of the proposed system was performed in a

systematic fashion, corresponding to the guidelines of the standard test

procedure described in Section II. Over forty simulation runs were made ex-

amining the system's deterministic performance and its performance in the

presence of attitude noise. No examination of the effects of range measurement

or slope measurement noise has been made to date.

Since the system was designed to detect positive obstacles, a systematic

testing with craters was not performed. The presence of all negative obstacles

is assumed to be detected by the ideal mechanical sensor.

During the simulation procedure three system parameters, namely, the sensor

mast height, the specified buffer zone, and the azimuth difference were varied

to determine how these parameters affect system performance.

C. Simulation Results

The simulation results are presented in three categories: single-boulder

encounters, multi-obstacle cases, and special terrains. A summary of the per-

formance of the mid-range sensor system in each category is given below.

1. Single-Boulder Encounters

a) Flat Base Terrain

In encounters with the 2 x 2 meter boulder the vehicle always

made a successful pass around the obstacle. However, in the presence

of attitude noise the vehicle sometimes took an erratic path to

target. As an example consider Fig. 111-3. The system detects the

boulder when the vehicle is seven meters away and steers gently

left. However, at the next scan attitude noise has tilted the sensor

mast ten degrees forward, driving the scans into the ground. As a
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result, the vehicle is fooled into believing there is an obstacle

directly in front of itself and steers sharply left.

In encounters with the smaller boulder (2/3 x 2/3 meters) system

performance was not always satisfactory. In the absence of noise

the vehicle often lost sight of the boulder between scan shots,

causing a collision. It was determined that, in order to avoid

such collisions, the azimuth difference must be reduced to three

degrees or less. In the presence of attitude noise the situation

was further complicated by the fact that scans were sometimes

directed over the top of the boulder or into the ground in front of

it, blinding the vehicle of the trouble area.

b) Gently Rolling Terrain

Because of the vehicle-fixed mast when the vehicle travels uphill

scans point over the hill, whereas when it travels downhill scans

point into the next rise. The magnitude of this disturbance is a

function of the mast height.

The gently rolling terrain presented little difficulty for a

mast height of two meters when no obstacles were encountered (see

Fig. 111-4). However, with the two meter mast boulders frequently

went undetected as scans went over their tops. With smaller mast

heights (0.5 and 1.0 meters) the vehicle detected more obstacles,

but was forced to traverse the terrain at an angle in order to

reduce the magnitude of the in-path slopes. In this testing sequence

the best compromise of mast height was estimated to be between one

and two meters.

c) Rolling Incline

In this sequence runs were restricted to uphill cases. System
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performance was generally good when the boulder placement was near

the bottom of the hill. However, when the boulder was placed at

the crest of the hill it was never detected by the system, because

as the vehicle approached the obstacle the sensor scans were pointing

over it due to the in-path slope of the hill. Figure III-5 is an

example of a case where a 2 x 2 meter boulder was placed near the

bottom of the hill, and Fig. 111-6 is an example of a case where a

2/3 x 2/3 meter boulder was placed on the crest of the hill. In

the latter case the system fails to detect the boulder, but the

ideal mechanical sensor detects it just prior to a collision and

triggers a call to the emergency mode.

Throughout the single boulder encounters one of the system parameters

varied was the desired buffer zone. Table III-2 contains the average

obstacle clearance distances for various values of desired buffer zones.

The number of runs averaged is in parenthesis following each value.

There are two significant results. First, as the width of the desired

buffer zone is increased from one meter to two meters the percentage of

actual buf:fer zone achieved decreased from about 80%0 to 50%0. Secondly,

in the presence of noise the vehicle usually passed closer to the

obstacle.

A comparison of system performance with two different buffer specifi-

cations in a single boulder encounter is shown in Fig. 111-7..

2. Multi-Obstacle Cases

In a deterministic run through a field of ten large boulders the

vehicle was able to find a short and safe path to target. However, when

the system was simulated over a realistic boulder-crater field which
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TABLE 111-2. AVERAGE OBSTACLE CLEARANCES

Desired Average Obstacle Clearances
buffer
zone noise no noise
(meters)

0.0 0.04 (1) 0.04 (3)

0.5 0.39 (2) 0.46 (3)

1.0 0.68 (3) 0.84 (3)

2.0 0.95 (1) 1.09 (3)
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included a small rise and noise, the performance was not as efficient

as before (see Fig. 111-8). For this simulation a one meter mast height

and one half meter buffer zone were specified. The vehicle was eventually

able to reach its target despite misinterpreting the small rise as an

unnegotiable obstacle and using the emergency mode thirteen times.

3. Special Terrains

A special terrain containing three large boulders and a cliff was

designed to challenge the emergency mode of the path selection algorithm.

On this terrain the vehicle is faced with two impassable regions and one

passable region. As depicted in Fig. 111-9 the system failed to find the

passable region as the emergency mode repeatedly steered the vehicle back

into the trouble area. The problem with the emergency mode is that once

a backup maneuver is performed the closest acceptable path to target is

again selected, irregardless of the fact that the vehicle had already

unsuccessfully tried that path.

To solve this problem it was concluded that some form of memory

capability must be added to the emergency algorithm. Based on this con-

clusion a new emergency mode was proposed. The new procedure includes

the following steps:

1) the vehicle is backed up in a straight line,

2) a preferred side is chosen,

3) a new sensor scan is taken,

4) the seven forward paths and the fourteen

unpreferred side paths are blocked, and

5) the terrain modeler is instructed to block

the unpreferred side paths for the next

three sensor scans.
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As shown in Fig. III-10 the proposed emergency algorithm enabled the

vehicle to successfully find the passable region to target with only one

backup.

D. Conclusions and Recommendations

The analysis of this system has shown that it has the ability to success-

fully navigate the vehicle over most simple and clearly defined obstacle

encounters, but has limited ability on realistic terrains and in the presence

of random effects.

The analysis of the effects of three system parameters on system per-

formance has shown the following:

1) The type of terrain and the size of obstacles which are

detectable is a function of mast height. With mast heights

of one-half or one meter, noise disturbances frequently

triggered the emergency mode when no emergency really

existed. The two meter mast height is not satisfactory

for detecting obstacles smaller than the 2 x 2 meter boulder.

A mast height of between one and two meters appears to be

the best compromise.

2) The additional obstacle clearance obtained as the desired

buffer zone is increased beyond one meter is small. A one-

half to one meter buffer is recommended. This specification

should produce an actual obstacle clearance of 0.4 to 0.85

meters in most cases.

3) With an azimuth difference of six degrees the vehicle

frequently struck the 2/3 x 2/3 meter boulder, even in

the absence of noise. Results show that in order for the
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system not to lose sight of the small boulder between scan

shots, the azimuth difference must be reduced to three

degrees or less.

To increase the system's capability to negotiate realistic terrains the

following path selection system modifications are recommended as items for

future study.

1) The addition of a dual or multi-beam sensor system

incorporating different elevation angles or sensor

heights. The purpose of varying the orientation or

position of sensor locations would be to divorce the

function of detecting large positive obstacles from

that of detecting small boulders and craters.

2) The use of nonuniform sensor scanning with the greatest

density of scans being taken directly in front of the

vehicle. This type of scanning would give the system

more information about the critical area directly in

front of the vehicle, but would also require a more

complex terrain modeling process.

3) The incorporation of an emergency mode which has the

ability to remember where a trouble area exists until

the vehicle has safely passed the problem.
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IV. PERFORMANCE OF A SHORT RANGE SYSTEM

The following discussion describes a computer simulation analysis of a

short range path selection system. By the term "short range" it is to be

understood that the system's sensors are constrained to have a maximum range

of three meters, and can only make range measurements with reasonable accuracy

up to this distance. The thrust of this investigation is purely conceptual,

aimed at examining the question of whether successful navigation to a distant

target can be done effectively based upon range-azimuth data of a limited

nature. The sensor model and mounting configuration that were simulated in

this analysis should properly be thought of as a method of gathering terrain

modeling information at a distance of one to two meters in front of the

vehicle and not as a specific hardware design.

A. System Description

1. Sensors and Sensing Configuration

The sensors used in the simulations are ideal beam-type range finders

that have a maximum range of three meters and a zero beam width. It is

assumed that a measurement with this type of sensor can be made instan-

taneously. Figure IV-i shows the sensing configuration that was used in

the simulation. Two of the beam type sensors are mounted at the end of

an arm attached to the vehicle as shown. The "down beam" makes a range

measurement that is used for terrain modeling purposes while the forward

beam measurement is used to protect the arm from colliding with a terrain

feature.

It is assumed that the arm can be retracted to a length of one meter

if necessary. The forward beam range measurement is used to trigger this

retraction and to detect the presence of positive obstacles. To compensate
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for random tilts of the vehicle resulting in inadvertent retractions of

the arm, the forward beam is gimballed as a function of the change in

the down beam range measurement. This generally insures that the range

measured by this beam is at least a meter and a half unless a terrain

feature is encountered.

For example, in normal operation the angle of the forward beam is

700 relative to the local normal. However if the arm is tilted downward

due to a terrain irregularity the forward beam is gimballed upward by an

equal amount (see Fig. IV-2). This operation is assumed to be ideal and

the effects of noise are neglected.

During scanning operation the arm is rotated from left to right

through a 1800 traverse and every six degrees measurements are made with

both beams. Figure IV-3 shows a top view of this scheme. It is assumed

that the speed of this operation relative to the vehicle's speed allows

the change in the vehicle's position during this operation to be neglected

and the operation to be repeated at every half meter advance. Because the

arm is mechanically operated this assumption is not realistic.

Upon completion of a scan, the stored forward and down beam range

information is passed to the terrain modeler for processing.

2. Terrain Modeler

The terrain modeler simulates an on-board processor that converts

the range-azimuth data provided by the scanning operation into a form

amenable to path selection decisions. Down beam information is processed

by a slope modeler that converts each range measurement to a slope by

assuming a linear slope from the vehicle's position to the beam's impinge-

ment point as shown in Fig. IV-4. Measurements of the vehicle's pitch

and roll attitudes at the time the scan was performed are used in the
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calculation of this slope to improve its accuracy. The modeler converts

the resultant slopes to a go/no-go array by comparing the absolute value

of each of the slopes to a 200 threshold. Exceeding this threshold is

termed a no-go condition.

Forward beam information is processed into a one-zero array by com-

paring each measurement to a 1.5 meter threshold. A measurement less

than 1.5 meters is assigned a zero. Both the go/no-go and one-zero

arrays are then passed to the path selection algorithm for processing.

3. Path Selection Algorithm

The algorithm begins processing by analyzing the forward beam range

information provided by the terrain modeler. If any of these measure-

ments are less than 1.5 meters, indicated by a zero in the one-zero

array, the algorithm assumes that a substantial change in slope is

occurring due to approaching or leaving a hillside. The sensor arm is

retracted to a one meter length to obtain a safe clearance during this

maneuver and is held in the retracted mode for three successive scans

before being.re-extended. If the arm is already in the retracted mode

and a forward beam range measurement is less than 1.5 meters the

algorithm assumes the measurement indicates a no-go condition. -In this

fashion a forward beam go/no-go array is assembled.

Both forward and down beam go/no-go arrays are then scanned to de-

termine if a no-go condition exists. If the area in front of the vehicle

is clear the azimuth from the vehicle's current position to target is

computed and assigned as the next steering command. If a no-go condition

exists, the system goes into the avoidance mode and the vehicle is backed

up two meters on a straight line to obtain room to maneuver. The

algorithm then computes a path around the righ-most or left-most no-go

condition by assigning two intermediate targets on a four meter radial
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arc centered on the no-go condition as shown in Fig. IV-5. The choice

of moving to the right or left is dictated by choosing the shortest

avoidance path.

In summary, this short range system probes cautiously forward

obtaining terrain information concerning the vehicle's immediate path.

Once an obstacle is detected the vehicle is backed up a short distance

on a straight line to obtain room to maneu er. From the information

obtained when the detection of the obstacle occurred, the path selection

system estimates the obstacle's size and computes a "safe" path around

the right or left edge. The shortest detour from the intended line of

travel is chosen as the avoidance path.

B. Simulation Procedure

1. Test Procedure

The computer analysis of the short range system generally followed

the procedure outlined in Section II of this report. This analysis began

with a sequence of simulations involving a single boulder or crater en-

counter on a flat base terrain. The system's deterministic performance

was examined as well as its performance in the presence of attitude,

range and slope measurement noise. Attitude noise was simulated by adding

filtered white noise with a maximum deviation of 100 to the vehicle's

in-path and cross-path slopes as it moved across the test terrain. Range

and slope measurement noise were simulated by adding unfiltered white

noise to these measurements during every scanning operation. Appropriate

noise levels for range and slope measurement noise were obtained by

running several simulations using each random effect alone and specifying

different maximum deviations for the distribution of the noise.

Maximum deviations of 0.1 meters and 50 where chosen to simulate



48.

SECOND
INTERMIEDIATE
TARGET

CRATER 4 METERS

NO-GO POSITION

-I

FIRST
VEHICLE INTERMEDIATE
BACKED UP TARGET
2 METERS

AVOIDANCE MANEUVER

Fig. IV-5



49.

these effects and the system's noisy performance was simulated by using

all of the random effects together.

The flat plain, single obstacle encounter simulations provided

information about the effect of each type of noise on the system's

obstacle avoidance performance. In addition, successful performance on

this simple test terrain served as a justification for proceeding to

more difficult situations.

The short range system's ability to avoid a single boulder or crater

in a non-zero slope setting was examined by simulations involving a

single obstacle encounter on the gently rolling and rolling incline test

terrains shown in Figs. 11-2 and 11-3. Simulations without an obstacle

were run for both deterministic and noisy performance cases to determine

the vehicle's path to target and to serve as baselines when evaluating

the system's obstacle avoidance behavior. The boulder or crater was

placed on this path in subsequent simulations at locations where the

local slopes made detection difficult.

After examining the short range system's ability to negotiate about

a single obstacle in a variety of slope settings and in the presence of

random effects, attention was turned to multi-obstacle encounters. The

present evaluation of this system was terminated by simulating the

system's noisy performance in traversing the boulder-crater field shown

in Fig. II-6.

2. Performance Evaluation

The short range system's performance in each simulation was "graded"

by assigning to it a figure of merit computed by (see Ref. 1):

5

Figure of Merit = W.F.

i=i



50.

where:

F. = a zero (worst case) to unity (best case) index
1

of a given performance characteristic.

W. = the weight of the corresponding index.
1

The weights were chosen so that the figure of merit would vary from

zero to a maximum of unity for ideal performance. The following indices

were used:

a) Path Length

Excessively long, wandering paths to target were penalized by

using an index of the form:

D
m

F=D +D
e m

where Dm is the distance between the starting position and the

target, and De + D is the length of the path taken by the system.

b) Battery Usage

Selecting paths containing steep slopes, thereby forcing the

vehicle to rely on its batteries, was penalized by using an index

of the form:

T - Tb
F2 = T

where T is the time taken to reach the target and Tb is the amount

of time the batteries were used.

c) Traverse Time

To penalize slow, inefficient performance the following index

was used:

T

e m
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where T is the minimum time necessary to reach target by travelling

on a straight line path from the starting position to the target,

and T + T is the time the system actually took to reach the target.
m e

d) Obstacle Detection

The system's failure to detect the presence of a boulder or

crater in a one meter semi-circle immediately in front of the vehicle

was counted as an obstacle detection error. Making such errors in

the course of a simulation was penalized by an index:

Ne
F4 + N

where T is the total number of detection errors the system committed

during the simulation.

e) Path Safety

A measure of the safety of the chosen path was obtained by first

assigning buffer distances of 0.5 meters for boulders and 1.0 meters

for craters. If during the simulation the distance between the

vehicle and the obstacle grew less than the specified buffer distance,

a penalty of 1/2 was assigned. If the vehicle struck the obstacle

a penalty of one was assigned. Performance was measured by:

1
F5  1 + P

where P is the sum of the assigned penalties.

The path length, battery usage, and traverse time indices were

each assigned weights of 0.10. The obstacle detection, and path

safety indices were assigned weights of 0.20 and 0.50, respectively.

In addition to the figure of merit, the vehicle's closest

approach to the obstacle before detection and the minimum clearance
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maintained as the vehicle circled the edge of the obstacle were

recorded as indicators of performance in each simulation.

C. Simulation Results

1. Case I: Single Boulder Encounter on a Flat Base Terrain

This first sequence of simulations inv lved an encounter with a 2/3

meter high, drum model boulder on a flat base terrain. The results are

summarized in Tables IV-i and IV-2.

As Table IV-2 indicates the results for all simulations except

Test 6 were identical. In the tests exhibiting similar results the

boulder was initially detected by the forward beam when the fully ex-

tended arm was slightly less than 1.5 meters from the boulder. This

first detection caused the arm to be retracted to a one meter length and

the vehicle continued to move forward. A second.detection by the forward

beam occurred when the retracted arm was roughly 0.67 meters from the

boulder. The path selection algorithm now recognized the existence of

an obstacle in the vehicle's path and initiated a two meter backup.

The vehicle was then directed to circle the estimated location of the

boulder's right edge. A typical vehicle path map for these simulations

is shown in Fig. IV-6.

The similarity of the results for these tests, though in each case

a different random effect is being employed, is explained by noting the

effect of each type of noise on the forward beam range measurement.

Detection before the boulder is under the arm depends solely upon the

magnitude of this measurement. Clearly this measurement is independent

of slope measurement noise. Attitude noise is compensated for by

gimballing the forward beam as a function of the down beam range measure-
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TABLE IV-1. SIMULATION SEQUENCE FOR CASE I

Test Noise
Number Type Used Mean Maximum Diviation

1 None -

2 Attitude 0. 10.00

3 Slope
Measurement 0. 5.0

4 Slope 0. 10.00
Measurement

5 Range 0. 0.1 meter
Measurement

6 Range O. 0.5 meter
Measurement

Attitude 0. 10.00

Slope 0. 5.00
7 Measurement

Range O. 0.1 meter
Measurement



TABLE IV-2. PERFORMANCE RESULTS FOR CASE I

Test Numbers

Item 1 2 3 4 .5 6 7

Closest
Approach Distance
Before Detection (meters) 1.67 1.67 1.67 1.67 1.67 0.67 1.67

Minimum Clearance
While Circling
Edge (meters) 2.20 2.20 2.20 2.20 2.20 2.60 2.20

Selected Path
Length (meters) 18.50 18.50 18.50 18.50 18.50 19.00 18.50

Battery Usage
Time (seconds) 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Total Travel
Time (seconds) 18.50 18.50 18.50 18.50 18.50 19.00 18.50

Number of Buffer
Penalties 0 0 0 0 0 0 0

Number of Detection
Errors 0 0 0 0 0 1 0

Number of Collisions
With an Obstacle 0 0 0 0 0 0 0

Figure of Merit 0.907 0.907 0.907 0.907 0.907 0.806 0.907
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ment and this seems to have worked successfully in this case. Range

measurement noise with a maximum deviation of 0.1 meters causes only

negligible corruption of the range measurements and a small amount of

spurious gimballing of the forward beam. Apparently this noise level

can be tolerated without degrading the system's performance. Test 7

indicates that the system can perform adequately in the presence of all

three of these noise effects for the noise levels specified in this

simulation.

In Test 6, where range measurement noise with a maximum deviation

of 0.5 meters is being used, the simulation output and vehicle path map

shown in Fig. IV-7 indicate the results of this test are the same as the

other tests until the first detection of the boulder occurs. At this

point in the simulation the noise in the down beam range measurement

becomes strong enough to cause the forward beam to be gimballed over the

approaching boulder. The system finally detects the boulder with a down

beam slope measurement when the boulder is 0.67 meters from the front of

the vehicle. A detection penalty is assigned for failing to detect at a

range greater than one meter.

2. Case II: Single Crater Encounter on a Flat Base Terrain

The same sequence of simulations shown in Table IV-1 was repeated

for encounters involving a single crater on a flat base terrain. A

spherically shaped crater, one meter deep and three meters in diameter,

was used. The results of these simulations are summarized in Table IV-3.

In Test 1 the system's deterministic behavior was examined and the

vehicle path map for this simulation shown in Fig. IV-8 indicates a per-

formance comparable to the successful boulder cases. The system detects

the crater at a distance of 1.5 meters in front of the vehicle, backs up
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TABLE IV-3. PERFORMANCE RESULTS FOR CASE II

Test Numbers

Item 1 2 3 4 5 6 7

Closest
Approach Distance
Before Detection (meters) 1.50 2.00 1.00 1.00 1.50 1.50 1.50

Minimum Clearance
While Circling
Edge (meters) 0.828 0.934 1.11 1.11 0.909 1.18 1.13

Selected Path
Length (meters) 18.00 23.50 18.50 18.00 18.00 19.00 24.50

Battery Usage
Time (seconds) 2.00 4.00 2.00 2.00 2.00 2.00 4.00

Total Travel
Time (seconds) 18.00 23.50 18.50 18.00 18.00 19.00 24.50

Number of Buffer
Penalties 3 1 1 1 2 0 0

Number of Detection
Errors 0 0 1 1 0 0 0

Number of Collisions
With an Obstacle 0 0 0 0 0 0 0

Figure of Merit 0.611 0.711 0.642 0.643 0.659 0.907 0.879
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and circles around the obstacle's right edge to target. This performance

is awarded a somewhat low figure of merit for passing too close to the

edge of the crater during the circling maneuver.

This type of behavior of passing to close to the crater as it slides

from view causes the second backup and avoidance maneuver shown in

Fig. IV-9, the vehicle path map for Test . In this simulation attitude

noise is being used and a random tilt forward as the vehicle approaches

the crater causes detection to occur sooner than in the deterministic

case. The second backup results in a safer path and a higher figure of

merit for this simulation.

The vehicle path maps for Tests 3 and 4 are shown in Figs. IV-10

and IV-11 respectively. The results of both simulations are quite

similar. In both cases the system fails to detect the crater until it

is one meter from the front of the vehicle. The noise being used in these

simulations corrupts the measurement of the vehicle's orientation that is

used in computing a slope from the down beam range measurement. This

seems to have masked the presence of the crater in these two simulations.

Once the crater is detected a good estimate of its size is obtained and

a safe av-,idance path is computed. The vehicle moves to the left because

the random effects have made the crater appear to lie to the right of the

line of travel.

The results of Test 5, where low order range measurement noise is

being used, are comparable to the results obtained for the deterministic

case as shown by Table IV-3 and a comparison of Figs. IV-8 and IV-12.

When the range measurement noise level is increased in Test 6 the detected

crater appears to be quite large to the system and the wide avoidance

path shown in Fig. IV-13 is taken,resulting in a good figure of merit.
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In Test 7 attitude, range and slope measurement noise are used

simultaneously at levels indicated in Table IV-i. Acceptable results

are obtained as shown by Fig. IV-14 and Table IV-3. In subsequent

simulations the system's noisy performance was examined by using all of

the random effects simultaneously at the noise levels shown to be appro-

priate in Test 7 of Case I and II. It is to be understood that these

noise types and values are being employed when noise is indicated in the

table below.

3. Case III: Single Obstacle Encounters on a Gently Rolling

Base Terrain

In this sequence of simulations boulder and crater encounter situ-

ations on the gently rolling test terrain shown in Fig. 1I-2 were used

to examine the effects of non-zero in-path and cross-path slopes on the

system's performance. Before starting this sequence, baseline simulations

without obstacles were run for both deterministic and noisy system per-

formance. In the noisy case it was found that the slope measurement

threshold of-the slope computed from the down beam range measurement

needed to be extended from 200 to 250 to successfully navigate -;his test

terrain. A careful check of the outputs of the simulations used in

Case I and II indicated that this new threshold would not have changed

the results of these simulations.

After completing the baseline cases the single boulder and crater

encounter simulations indicated in Table IV-4 were examined. The results

of these simulations are summarized in Table IV-5.

The results of Tests 1 and 2, where no noise is being used, are

comparable to results obtained for encounters on a flat base terrain.

In both simulations the obstacle is detected about two meters from the
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TABLE IV-4. SIMULATION SEQUENCE FOR CASE III

Test Noise Obstacle Diameter Height

Number (meters) or

Depth (meters)

1 Boulder 2/3 2/3

2 Crater 3 1

3 X Boulder 2/3 2/3

4 X Crater 3 1
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TABLE IV-5. PERFORMANCE RESULTS FOR CASE III

T st Numbers

Item 1 2 3 4

Closest
Approach Distance
Before Detection (meters) 2.01 1.82 0.724 1.49

Minimum Clearance
While Circling
Edge (meters) 2.31 1.07 2.28 1.60

Selected Path
Length (meters) 32.07 32.09 44.59 36.67

Battery Usage
Time (seconds) 13.07 13.09 14.00 16.67

Total Travel
Time (seconds) 32.07 32.09 44.59 36.67

Number of Buffer
Penalties O 0 0 0

Number of Detection
Errors O 0 1 0

Number of Collisions
With an Obstacle O 0 0 0

Figure of Merit 0.909 0.909 0.778 0.885
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vehicle and a good estimate of its size is obtained. The vehicle path

maps for these runs shown in Figs. TV-15 and IV-16 indicate the path

selection algorithm has computed a safe avoidance path to target in both

simulations. This safe performance results in a high figure of merit in

each case.

In Fig. IV-17, the vehicle path map for Test 3, the boulder is

initially detected at a distance of two meters and the vehicle is directed,

to circle its left edge. When the vehicle turns toward the final target

noise effects cause the up-coming grade to be seen as an obstacle and

the system attempts to avoid it by maneuvering around the estimated

position of the right edge. While making this maneuver the boulder is

encountered a second time but is not detected until it is 0.72 meters

from the front of the vehicle. A detection penalty is assigned for

failure to detect at a range greater than one meter. At this point,

finding its path to the right blocked, the path selection algorithm directs

the vehicle back to the point where the grade was detected as an obstacle

and now attempts to avoid it by maneuvering left. After a two meter

backup the vehicle circles left to target.

In Fig. IV-18, the vehicle path ma. for Test 4, random effects have

masked the presence of the crater in the vehicle's path and have caused

a closer approach before detection than in the deterministic case. The

vehicle is backed up and starts to circle right when the system is fooled

by noise and local slopes that make it appear that the path to the right

is blocked. The vehicle is directed back to the point where it first

detected the crater and avoidance is attempted by circling to the left.

The left edge of the crater is detected forcing a second backup and a

deeper swing left around the crater to target.
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4. Case IV: Single Obstacle Encounters on a Rolling Incline

A seven meter high rolling incline test terrain was used to examine

the short range system's performance on a hillside. Baseline runs for

deterministic and noisy performance produced identical output that in-

dicated the vehicle would climb directly up the incline to target. In

subsequent simulations a single boulder or crater was placed near the

crest of the hill as shown in Fig. IV-19. The same obstacles used in

Case III were employed but a spherically shaped boulder was used instead

of the drum type.

Deterministic encounters were simulated first and in each case the

vehicle struck the obstacle at the top of the hill. Figure IV-20 is

a reconstruction of the events that resulted in the collision with the

boulder. As the vehicle approached the crest of the hill the forward

beam was gimballed over the boulder allowing it to come beneath the

swinging arm as the vehicle continued to move forward. The shape of the

boulder and the attitude of the vehicle then resulted in a failure to

detect the boulder through a down beam slope measurement. The vehicle

proceeded forward to collide with the bculder.

The events that led to the collisi n with the crater are shown in

Fig. IV-21. A combination of the crater's orientation relative to the

approaching vehicle and the chance impingement of the down beam just

inside the crater's edge fails to result in a slope measurement that

exceeds the 250 threshold. The crater goes undetected and the collision

occurs.

At this point further simulations on this terrain were discontinued

pending changes in the short range system.
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TERRAIN PROFILES
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Fig. IV-19
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OVER THE BOULDER
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CASE IV: BOULDER ENCOUNTER (NO NOISE)

Fig. IV-20
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RESULTS IN COLLISION WITH CRATER

CASE IV: CRATER ENCOUNTER (NO NOISE)

Fig. IV-21
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5. Case V: Boulder-Crater Field

The test terrain shown in Fig. II-7 was used as a final 
examination

of the short range system's ability to avoid boulders 
and craters on

relatively flat base terrain. The vehicle path map for this simulation

shown in Fig. IV-22 indicates that the system performed reasonably well

and reached target successfully. This performance was awarded a low

figure of merit of 0.413 as a result of the vehicle's 
backing over the

two small boulders midway in Fig. IV-22. This occurred as a result of

an oversight in not providing a tactile sensor on the rear 
of the

vehicle.

An interesting aspect of the system's behavior was exhibited 
as the

vehicle approached the two boulders near the target position. 
The vehicle

path oscillates between encountering one then 
the other boulder because

this memoryless system repeatedly commits the same mistakes.

D. Conclusions and Recommendations

The results of Cases I, II and V indicate that the memoryless short range

system performs reasonably well in the presence of 
moderate amounts of

noise on relatively flat base terrains. However, Cases III and IV show

that this performance degrades in the presence of non-zero local slopes

and noise. Frequently these effects cause the system to confuse clear

terrain for an impassable feature. Simulation output for these cases

seems to indicate that improper gimballing due to range and slope measure-

ment noise is the principal cause of this confusion.

All of the simulations indicate that a memory capability and more

extensive path selection algorithm would enhance the system's performance.

The system should be changed so as to not only estimate the size, type
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and location of the detected obstacle but to store this information for

future reference. In addition, keeping a record of the current average

in-path slope would lend itself to estimating the type of terrain that

is being traversed. This information could be used to control the

vehicle's speed and the sensors' orientation to obtain better performance

near the crest of a hill or on a rolling terrain.

To conclude, this analysis indicates that path selection based upon

limited range-azimuth information is feasible. Further work in this area

should concentrate on examining a system with a memory capability and a

more elaborate path selection system control algorithm, giving particular

attention to the system's noisy performance on rolling base terrains.

The simulation should be expanded to include a scanning operation that

would require a finite amount of time and take into account the vehicle's

motion.
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V. SUMMARY

A. Summary of Progress

Over the past three years a roving-vehicle path selection evaluation

system has been developed. The system can realistically simulate and

quantitatively evaluate the performance of a wide variety of path selection

systems under consideration for a Martian roving vehicle. The computer

package includes the capability of simulating random effects due to vehicle

bouncing, sensor error, and slope measurement error.

During the past fifteen months a set of standard test terrains and

simulation procedures has been developed. In addition two path selection

systems have been evaluated to determine the usefullness of the standard

testing procedure and to determine the strengths and weaknesses of the proposed

systems.

B. Future Work

1. Standard Test Terrains and Procedures

The development of standard test terrains and simulation procedure

represents a first attempt at establishing a uniform means for path

selection system evaluation using the computer simulation package.

As more information about the actual Martian surface becomes avail-

able the standard test terrains should be updated to maintain a high

level of realism. However, the general format of beginning with simple

obstacle encounter situations and then proceding to progressively more

complex terrains should be maintained.

The terrain characterization block of the computer simulation package

has the capability of building Gaussian distributions to convey low
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frequency terrain features. It appears that with the use of Gaussian

hills many realistic standard test terrains could be developed. It is

suggested that the use of this type of terrain characterization be in-

vestigated.

At present the user is free to select any weights desired for use

in the calculation of the quantitative performance index. The development

of a procedure for establishing these weights, which would take into

account the complexity of the terrain being used and the system design,

would help to increase the usefullness and reliability of the performance

index.

2. Evaluation of a Mid-Range Sensor System

The analysis of the proposed mid-range sensor system has not only

demonstrated that the system has some promising features, but has also

shown where some of the system weaknesses exist. It is suggested that

the recommendations for system improvements, which resulted from the

evaluation, be applied to other mid-range sensor systems and that an

improved modification of this system be evaluated.

3. Development of a Short Range Sensor System

The development and evaluation of a short range sensor system should

be continued. It is suggested that additional efforts be directed at de-

termining the constraints which a short range sensor system places on the

vehicle design and performance. It is more important to determine what

factors are critical to the successful performance of the system than to

actually design a particular sensor scheme.

4. Evaluation of Future Systems

The objective of this research is to evaluate proposed path selection

systems and to develop new path selection system concepts. Therefore, in

addition to the continued investigation of the subjects discussed in this

report, promising new path selection systems will be evaluated.
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